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The Euler approximation of stochastic differential equations driven by
a fractional Brownian motion

K. Kubilius (MII, VGTU)

In this note, we examine the strong approximation of stochastic differential equation
(SDE) of the form
dX, = f(t,X,)dt + g(t)d B/, 1)

or equivalently
t

t
X, = Xo+ / s, X;)ds + f g(s)dBY,
0 0

where B is a fractional Brownian motion (fBm) with the Hurst index 1/2 < H < 1
defined on a complete probability space (2, 7, P). The case H = 1/2 corresponds to the
ordinary Brownian motion. Results of this type are known only in the case H = 1/2 (see
[3D.

As is well-known (see, for example, [4]), a centered Gaussian process (X;);»o with
Xo=0is a fBm if

1

Cov(X;, X;) = EVar(xl)(tz”’ + 52— — 5 2H),

for all z, s > 0. If Var(X;) = 1, we write X = BH and call it a standard fBm.

Equation (1) differs from ordinary SDE by its second term on the right side. The fBm
B is not a semimartingale (see [4], [5]). There are some ways of defining stochastic
integral with respect to fBm. For example, Lin [4] defined the stochastic integral with
respect to Bf in the case, where the integrands are either deterministic bounded functions
or the compositions of deterministic bounded functions and BH (see also [1]). Lin found
existence and uniqueness conditions of the solution of equation (1).

In this paper, we use another definition of the integral f(; g(s)dBH. We define it as
the Riemann-Stieltjes integral using Young [6] results.

Let {t, O < k < n} be a partition of the interval [0,T], ie., 0 = <t <--- <
t, = T, and 8, = max, (% — t-1). For a given time discretization (), we define Euler
approximation

Y"(0) = X(0),
Y(r) = Y (t) + (0, YR — 8) + g(t) (B (1) — BY (1)), 1 € [, tks1),
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or, equivalently,
t

t
Y"(t)=Xo+ffn(S)dS+/gn(S)st”,
0 0

where f,(s) := f(t, Y™ (%)) and gn(s) := g(#) for s € [ty tes1), 0 <k <n—1.
Our main result is the following:

THEOREM 1. Let K, T be positive numbers, 8, < T/n, and let f(s, x), g(s) be Borel
functions such that

1. |gt) —g(s)| < K|t —s| for all s,t € [0, T];

2. |f(s,x)| < K(1 + |x|) for every fixed s € [0,T];

3. 1f(t,x) = fs, IS K(lx —yl+t—s|) forall s,t €[0,T] and x, y € R.

4. E|X|P < 00.

Then there exists a constant C such that

Esup|X, - Y'|" <C8?,  p>1.
t<T

THEOREM 2. Let conditions 2 and 3 of Theorem 1 be fulfilled. If moreover g €
W, (0, T]) and q"1 + A > 1, where . < H, then, for almost all w, there exists a
C(w) = C(Xo(w), p, K, T) such that

sup | X (@) — Y (@)|” < C@)&?,  p>1.
1T

Preliminaries
All facts mentioned bellow are taken from [2] and [6].

Let f be a real-valued function defined on a closed interval [a, b]. The p-variation,
0 < p < 00, of f is defined by

up(f) = vp(f; la, b = sup ) _ | F(x) = fxi-]’,
* =1

where the supremum is taken over all subdivisions » of [a,b]: sca=x0 <+ <x, =b,
n>1.If vp(f) < oo, f is said to have a bounded p-variation on [a, b]. If f is a Holder
function with 0 < « < 1, then it has bounded a 1/«-variation.

Denote by W,([a, b]) the class of functions defined on [a, b] with a bounded p-
variation, that is

Wy(la, b)) := {f: [a,b] > R: vp(f;la,b]) < oo}
Leta < ¢ < b and let f € Wy([a, b]) with 0 < p < 00. Then
v (f5 [a, c]) + vp(f; [c, b)) < vp(f; [a, b). 2)
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Young [6] proved that, if f € Wy([a, b]) and h € W, ([a, b]) with p,q >0, 1/p +

1/g > 1, have no common discontinuities, then the Riemann-Stieltjes integral fab fdh
exists and, for any £ € [a, b], the following inequalities hold:

< (14607 +a™))Vp(f: 0. BDVy(hi [a, BD,  (3)

b
f fdh— FE[hG) - h@)]

where ¢(s) denotes the zeta function, i.e., £(s) = 3,51 n~°, Vp(f) = Vp(f5la, b)) =
1/p
v (f)-

If the function k is continuous, then the indefinite integral f ay fdh, y €la,b],is a
continuous function ([2], Lemma 3.23).

1. Proofs

It is known that, with probability 1, sample functions of fBm B satisfy the Holder
condition of exponent A for each A < H. So fBm BY, 1/2 < H < 1, has a bounded
1/A-variation with probability 1 and v, /,\(B” ; [0, T) LT.

Now we prove Theorem 1.

From Holder’s inequality and Gronwall’s lemma it is evident that

T
sup |X, — Y|P <2”"e”KT(T"‘1/lf(s, Y") = fa(s)|ds
0

0<t<T
p)

T n 11
1600 = pioplas < ke Y [ [l = 4170) = v Jas.
0 k=1,

“4)

t

+ sup f [8(s) — gn(s)]d B/

0T o

We further have

For s € [ty—1, tx), we have
[Y7(s) = Y"(te=1)|” < 1f (ke Y7 (8- (5 = te-1)
+ g(te—1) (B (s) — B (1x-1)) "
<APTIKP (14 1Y (1= 1)1P) (s — Bir)?
+ 2P 11812 |BH (s) — B (t-1)|".
). (7

By Gronwall’s inequality we get
!

max |Y"(%)| <eKT(|Xo|+KT+ sup /gn(S)dBf"
1<k<n

01T
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In [4], Lin showed that there exists a constant Cy p, 0 < p < 00, depending only on
H and p such that, for any bounded measurable function 4 on [0, T},

!

f h(s)dB!

p

E sup < Cp.ulhlE,. (8)

0<t<T

So maxjgkgn |Y"(#)|? is integrable.
It is known that that for each p > 1 there is a C, < 00 such that

E|Bf - BE|P < Cplt —5|PH. )
Now from (6)—(9) we get
p
E|Y"(s) = " (50| < il + CalgledP, s €[, il (10)

The statement of the theorem follows from (4), (5), (10) and the inequality

t

f [g(s) — ga(s)]d B

p

E sup < Cp,HIg - gnlgo < Cp,HB,I,’~ O

ot<T

Now we prove Theorem 2.
First note that g, € W, ([0, T1), ¢ > 0, and V,(gx; [0, T]) < V,(g; [0, T]). Then from
(3) we have

t

sup f gn(s)dBH| < C a[V,(n: [0, T)) + (g(0)(]V1/a(BH; [0, T)

0<t<T

an

< Coa[Ve(g: 10, TD + 1(0)I] T2,

where C,, =1+ C(@™ 't +A).
From Hélder continuity of the sample paths of BH, inequalities (6), (7), and (11), it
follows that, for almost all w, there is a C(w) = C(Xo(w), p, K, T) such that

[Y"(s, w) = Y"(tk=1, 0)| S C(@)8) 5 € [te—1, 1e]. (12)

Let 0 < ¢ < 1 be such that A + ¢ < H. Then from (2), (3) and Holder inequality we
havev fort e [tm, tm+l],

t

f [8(s) — gn(s)]dBf
0

3

f [g(s) — g(te—1)])d Bf

k-1

+

m
<3
k=

1

t
/ [g(s) — g(tm)]d B
tm
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<Cyre Z Vo (8, (-1, 1) Vijasey (B, [th=1s )
k=1

+ Care Ve (8. ltm: 1)) Vijoute) (B, [tm, 1)

m

1/q
< Cyne ( Z v (g [te-1, tk]))

k=1

m £
x (Z Vifoss (B (i1, 1) + Vi oy (BY, ltm, r]))
k=1

m+1 .
< CuneK V(g [0, T])( Z(tk - tk_l)‘“/‘)
k=1

< CyneK Vg (g, [0, T1)8,TE,
where Cy e =1+ ¢(g~ "+ A +¢). Since & > 0 is arbitrary then

!

f [8(s) — gn()]dBf| < (1+¢(g™" + 1)K V, (g, [0, T1)82. (13)
0

sup
1T

The statement of the theorem now follows from inequalities (4)—(7) and (11)—(13).
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Darbe nagrinéjama stochastiné diferencialiné lygtis, kurioje integralas, at?vilgiu trupmeninio Brauno
judesio, apibreZiamas dviem skirtingais buidais. Gauti du skirtingi jveriai.



