Asymptotic expansion in approximation by normal law
Articles
Algimantas Bikelis
Vytauto Didžiojo universitetas
Juozas Augutis
Vytauto Didžiojo universitetas
Kazimieras Padvelskis
Vytauto Didžiojo universitetas
Published 2011-12-15
https://doi.org/10.15388/LMR.2011.tt01
PDF

Keywords

probability distributions in R^k,
convolutions
Bergström identity
Appell polynomials
Chebyshev–Cramer asymptotic expansion

How to Cite

Bikelis, A. , Augutis, J. and Padvelskis, K. (2011) “Asymptotic expansion in approximation by normal law”, Lietuvos matematikos rinkinys, 52(proc. LMS), pp. 349–352. doi:10.15388/LMR.2011.tt01.

Abstract

We consider the asymptotic behavior of the convolution P*n(A\sqrt{n}) of a k-dimensional probability distribution P(A) as n \to  \infty for A from the \sigma-algebra M of Borel subsets of Euclidian space Rk or from its subclasses.

 

PDF

Downloads

Download data is not yet available.

Most read articles in this journal

1 2 > >>