Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions
Articles
Tomas Ruzgas
Institute of Mathematics and Informatics
Mindaugas Kavaliauskas
Published 2005-12-18
https://doi.org/10.15388/LMR.2005.30856
PDF

Keywords

nonparametric density estimation
inversion formula
characteristic function

How to Cite

Ruzgas, T. and Kavaliauskas, M. (2005) “Nonparametric density estimation using a multidimensional mixture model of Gaussian distributions”, Lietuvos matematikos rinkinys, 45(spec.), pp. 369–374. doi:10.15388/LMR.2005.30856.

Abstract

This paper algorithmically and empirically studies five major types of nonparametric multivariate density estimation techniques, where no assumption is made about data being drawn from any of known parametric families of distribution. There is developed method of inversion formula where noise cluster is included to general Gaussian mixture model.

PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.