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Abstract. This paper deals with existence results of nonnegative solutions for a one-parameter
sublinear elliptic boundary-value problem driven by the classical fractional Laplacian operator. The
existence of a weak solution for any parameter λ beyond the first resonance has been proved by
using a slight variation of the classical Mountain Pass result due to Ambrosetti and Rabinowitz.
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1 Introduction

In recent years, nonlocal operators have aroused much interest in the mathematical litera-
ture, thanks also to their numerous applications in different fields (physics, mathematical
finance, population dynamics, just to name a few). The literature on nonlocal operators
and on their applications is very interesting; see, for instance, [6] for an elementary
introduction to this topic and for related references.

Nonlocal problems have been studied using different approaches and techniques. Here
we want to focus on problems with a variational structure. In this framework a lot of
works appeared in the literature about the existence and multiplicity results for nonlocal
fractional equations under various assumptions on the nonlinearity. We refer to the recent
monograph [14], which is dedicated to the study of fractional nonlocal problems involving
superlinear and subcritical nonlinearities, as well as critical nonlinearities, via classical
variational methods and other novel approaches.

To complete this analysis, in this paper, our aim is to consider variational nonlo-
cal problems in the presence of sublinear nonlinearities. More precisely, we study the
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existence of a weak solution for the following nonlocal Dirichlet problem:

(−∆)su+ uσ = λu in Ω,

u > 0, u 6≡ 0 in Ω,

u = 0 in Rn \Ω,
(Pλ)

where s ∈]0, 1[ is fixed, and Ω ⊂ Rn (n > 2s) is a bounded domain with continuous
boundary. Here

(−∆)su(x) := −
∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn,

denotes the classical fractional Laplacian, σ ∈]0, 1[, and λ is a real positive parameter.
As for the nonlocal diffusive operator, for the sake of concreteness, we stick here to

the prototypical case of the fractional Laplacian, but the arguments that we develop are in
fact usable in more general contexts including various interaction kernels of singular type
(cfr. Remark 2).

In order to give the weak formulation of problem (Pλ), we need to work in a special
functional space, which allows us to encode the Dirichlet boundary condition in the
variational formulation. More precisely, in the following, Xs

0(Ω) denotes the Sobolev
space of all the functions in the usual fractional Sobolev spaceHs(Rn), which vanish a.e.
outside Ω, i.e.,

Xs
0(Ω) :=

{
u ∈ Hs(Rn): u = 0 in Rn \Ω

}
.

Problem (Pλ) has a variational nature since its weak solutions are the critical points
of the Euler–Lagrange energy functional Jλ : Xs

0(Ω)→ R given by

Jλ(u) :=
1

2
‖u‖2Xs0 (Ω) −

λ

2
‖u+‖22 +

1

σ + 1
‖u+‖σ+1

σ+1 (1)

for every u ∈ Xs
0(Ω). Here and in the following, for any u ∈ Xs

0(Ω), we denote by u+

the positive part of u, that is, u+ := max{0, u}. Finally, along the paper, λ1,s is the first
(positive) eigenvalue of the nonlocal operator (−∆)s.

Now we can state the main result of the present paper, which reads as follows.

Theorem 1. Let s ∈]0, 1[, n > 2s, Ω be a bounded domain of Rn with continuous
boundary, and let σ ∈]0, 1[.

Then, for every λ > λ1,s, problem (Pλ) admits a weak solution uλ ∈ Xs
0(Ω), which

is a critical point of Mountain Pass type of the Euler–Lagrange energy functional Jλ.
Moreover,

Jλ(uλ) 6
1

2

1− σ
σ + 1

‖v+‖2(σ+1)/(1−σ)
σ+1

(λ‖v+‖22 − ‖v‖2Xs0 (Ω))
(σ+1)/(1−σ) (2)

for every v ∈ C(s)
λ , where

C
(s)
λ :=

{
v ∈ Xs

0(Ω): λ‖v+‖22 > ‖v‖2Xs(Ω)

}
.
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Theorem 1 is proved by using a refined version of [1, Thm. 2.1] applied to the set of
the continuous paths in Xs

0(Ω) given by

Γ
(s)
λ :=

{
γ ∈ C0

(
[0, 1], Xs

0(Ω)
)
: ∃ v ∈ C(s)

λ such that γ(0) = 0 and γ(1) = ζvv
}

for every λ > λ1,s, where the constant

ζv :=

(
2

σ + 1

)1/(1−σ) ‖v+‖(σ+1)/(1−σ)
σ+1

(λ‖v+‖22 − ‖v‖2Xs0 (Ω))
1/(1−σ) (3)

is the unique positive real number such that Jλ(ζvv) = 0. Subsequently, if we set

c := inf
γ∈Γ (s)

λ

sup
t∈[0,1]

Jλ
(
γ(t)

)
, (4)

the classical deformation result [1, Lemma 1.3] ensures that the set of critical points

K
(s)
λ,c :=

{
u ∈ Xs

0(Ω): Jλ(u) = c and J ′λ(u) = 0
}

is not empty; see Section 3.
Problem (Pλ) is asymptotically linear at infinity, and the Mountain Pass geometry is

essentially due to the presence of a sublinear positive perturbation. On the other hand,
the main variant of the classical Ambrosetti and Rabinowitz result used here guarantees
a precise information of the energy level of the Mountain Pass solutions uλ ∈ Xs

0(Ω) for
every λ > λ1,s. This estimate is the first step that can be useful in order to potentially
prove a bifurcation type result for problem (Pλ) by using suitable recurrence arguments.

Theorem 1 is the nonlocal counterpart of the result got by Porretta in [16]. On one
hand, the techniques of the proof follow the ones used in the classical framework of the
Laplacian. On the other hand, due to the nonlocality of the problem under consideration,
to make these nonlinear methods work, some careful analysis of the fractional spaces
involved, as well as their embedding properties, are necessary.

Finally, we notice that Theorem 1 is related to some bifurcation results already present
in the current literature in either the classical elliptic or nonlocal setting; see, among
others, the papers [7, 8, 13, 16], as well as [9, 10, 15] and the references therein.

The present paper is organized as follows. In Section 2 we recall some results on
fractional Sobolev spaces, while Section 3 is devoted to the proof of Theorem 1.

2 Preliminaries

In this section, we recall the definition and some properties of fractional Sobolev spaces
usefull along the paper.

In the following, Hs(Rn) denotes the usual fractional Sobolev space endowed with
the Gagliardo norm

‖u‖Hs(Rn) = ‖u‖2 +

( ∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1/2
;

https://www.journals.vu.lt/nonlinear-analysis
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see [23, Lemma 7]. While Xs
0(Ω) is the Sobolev space of all the functions in Hs(Rn),

which vanish a.e. outside Ω, i.e.,

Xs
0(Ω) :=

{
u ∈ Hs(Rn): u = 0 in Rn \Ω

}
.

By [18, Lemmas 6 and 7] we can take in Xs
0(Ω) the norm

Xs
0(Ω) 3 u 7→ ‖u‖Xs0 (Ω) :=

( ∫∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1/2
induced by the scalar product defined by

〈u, v〉 :=

∫∫
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy

for every u, v ∈ Xs
0(Ω); see [18, Lemma 7].

Moreover, along the paper, by Lν(Rn) we denote the classical Lebesgue space en-
dowed with the standard norm ‖·‖ν for any ν ∈ [1,+∞]. By [18, Lemma 8] and [23,
Lemma 9] we have the following result; see also [3].

Lemma 1. Let s ∈]0, 1[, n > 2s, and let Ω be a bounded domain of Rn with continuous
boundary. Then the embedding j : Xs

0(Ω) ↪→ Lν(Rn) is continuous for any ν ∈ [1, 2∗s],
while it is compact whenever ν ∈ [1, 2∗s[, where 2∗s := 2n/(n − 2s) is the fractional
critical Sobolev exponent.

Finally, λ1,s is the first eigenvalue of the nonlocal operator (−∆)s, that is, the first
eigenvalue of the problem

(−∆)su = λu in Ω,

u = 0 in Rn \Ω.

The variational characterization of λ1,s is given by

λ1,s = min
u∈Xs0 (Ω)\{0}

‖u‖2Xs0 (Ω)

‖u‖22
.

For all the properties of the eigenvalues of (−∆)s (and of general nonlocal fractional
operators), we refer to [20, Prop. 9 and Appx. A] and [11]. We also recall that a com-
plete study of the spectrum of fractional operators and of their eigenfunctions has been
considered in [17, 21, 22].

3 Proof of the main result

In this section, we prove Theorem 1 via variational methods, that is, looking for weak so-
lutions of problem (Pλ) as critical points of the Euler–Lagrange functional Jλ associated
with it.

First of all, we show that u ≡ 0 is a local minimum point of the energy functional Jλ
given in (1). More precisely, we prove the following claim.

Nonlinear Anal. Model. Control, 30(1):72–82, 2025
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Proposition 1. Let λ > λ1,s. Then

there exists % > 0 such that Jλ(u) > 0 for every u ∈ B̄% \ {0}, (5)

where B̄% := {u ∈ Xs
0(Ω): ‖u‖Xs0 (Ω) 6 %}.

Proof. We argue by contradiction and assume that (5) is not verified. Then there exists
a sequence (uk)k ⊂ Xs

0(Ω) such that

lim
k→+∞

‖uk‖Xs0 (Ω) = 0, uk 6= 0 and Jλ(uk) 6 0 for every k ∈ N. (6)

By (6), for every k ∈ N, we know that

1

2
‖uk‖2Xs0 (Ω) +

1

σ + 1
‖u+k ‖

σ+1
σ+1 6

λ

2
‖u+k ‖

2
2. (7)

Let (vk)k be the sequence in Xs
0(Ω) defined as

vk :=
u+k

‖u+k ‖Xs0 (Ω)

.

By [19, Lemma 5.2] we know that v+k ∈ Xs
0(Ω), while by (7) we deduce that

‖vk‖σ+1
σ+1 =

‖u+k ‖
σ+1
σ+1

‖u+k ‖
σ+1
Xs0 (Ω)

6
λ(σ + 1)

2

‖u+k ‖22
‖u+k ‖

σ+1
Xs0 (Ω)

6
λ(σ + 1)

2
‖u+k ‖

1−σ
Xs0 (Ω)‖vk‖

2
2 (8)

for every k ∈ N.
Furthermore, since ‖vk‖Xs0 (Ω) = 1 for every k ∈ N, due to the reflexivity of Xs

0(Ω),
up to a subsequence, still denoted by (vk)k, there exists v∞ ∈ Xs

0(Ω) such that

vk ⇀ v∞ weakly in Xs
0(Ω) as k → +∞,

and, as a consequence of this and [18, Lemma 8], again up to a subsequence, still denoted
by (vk)k, we have that

vk → v∞ in Lν(Ω) as k → +∞ for any ν ∈ [1, 2∗s[. (9)

By (6), (8), (9), the fact that σ < 1 and taking into account that ‖u+k ‖Xs0 (Ω) 6 ‖uk‖Xs0 (Ω)

(see [19, Lemma 5.2]), we deduce that vk → 0 in Lσ+1(Ω) as k → +∞, which, together
with (9), gives that

v∞ ≡ 0. (10)

Finally, dividing (7) by ‖u+k ‖2Xs0 (Ω), we have that

1

2
6

1

2
+

1

σ + 1

‖u+k ‖
σ+1
σ+1

‖u+k ‖2Xs0 (Ω)

6
λ

2
‖vk‖22,

which is a contradiction, thanks to (9) and (10). Then (5) holds true as claimed, and this
ends the proof of Proposition 1.
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Now, let us show that the Euler–Lagrange functional Jλ is positive on the boundary
of a suitable ball centered on 0. More precisely, we prove the following.

Proposition 2. Let λ > λ1,s and ρ > 0 be as in Proposition 1. Then there exists β ∈ R
such that for every u ∈ ∂B̄%,

Jλ(u) > β. (11)

Proof. We argue by contradiction and we suppose that there exists (uk)k in Xs
0(Ω) such

that ‖uk‖Xs0 (Ω) = ρ and
lim sup
k→+∞

J (uk) = 0. (12)

Since (uk)k is bounded in Xs
0(Ω), there exists u∞ ∈ Xs

0(Ω) such that

uk ⇀ u∞ weakly in Xs
0(Ω),

uk → u∞ in Lν
(
Rn
) (13)

as k → +∞ for any ν ∈ [1, 2∗s[. By (12), (13), and the weak lower semicontinuity of the
norm we get that

‖u∞‖Xs0 (Ω) 6 ρ (14)

and

0 > lim inf
k→+∞

Jλ(uk) >
1

2
‖u∞‖2Xs0 (Ω) −

λ

2
‖u∞‖22 +

1

σ + 1
‖u∞‖σ+1

σ+1

= Jλ(u∞). (15)

By (5), (14), and (15) we deduce that

u∞ ≡ 0. (16)

Moreover, by definition of Jλ we have that

0 6
1

2
‖uk‖2Xs0 (Ω) = Jλ(uk) +

λ

2
‖u+k ‖

2
L2(Ω) −

1

σ + 1
‖u+k ‖

σ+1
Lσ+1(Ω). (17)

Taking into account (12) and the fact that σ > 0, by (13), (16), and (17) we obtain that

ρ = ‖uk‖Xs0 (Ω) → 0

as k → +∞, which is a contradiction. Hence, (11) holds true, and this concludes the
proof of Proposition 2.

Now, let us show that the functional Jλ satisfies the Palais–Smale condition at any
level µ ∈ R. Aiming at this purpose, we prove the following result.

Proposition 3. Let µ ∈ R, and let (uk)k be a sequence in Xs
0(Ω) such that Jλ(uk)→ µ

and
sup
{∣∣〈J ′λ(uk), ϕ

〉∣∣: ϕ ∈ Xs
0(Ω), ‖ϕ‖Xs0 (Ω) = 1

}
→ 0 (18)

as k → +∞. Then, up to a subsequence, (uk)k converges in Xs
0(Ω) as k → +∞.

Nonlinear Anal. Model. Control, 30(1):72–82, 2025
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Proof. First of all, we show that (uk)k is bounded in Xs
0(Ω). To this aim, we argue by

contradiction and suppose that as k → +∞,

‖uk‖Xs0 (Ω) → +∞. (19)

Setting
vk :=

uk
‖uk‖Xs0 (Ω)

,

we have that (vk)k is bounded in Xs
0(Ω), and, by the embedding properties of Xs

0(Ω)
into the Lebesgue spaces, up to a subsequence, still denoted by vk, we may assume that
there exists v∞ ∈ Xs

0(Ω) such that

vk ⇀ v∞ weakly in Xs
0(Ω),

vk → v∞ in Lν
(
Rn
) (20)

as k → +∞ and for any ν ∈ [1, 2∗s[; see, for instance, [2, Thm. IV.9].
By (18) and (19) we get that

〈J ′λ(uk), ϕ〉
‖uk‖Xs0 (Ω)

→ 0

as k → +∞ for any ϕ ∈ Xs
0(Ω). By this, taking into account (19) and (20), we obtain

that ∫
Rn×Rn

(
v∞(x)− v∞(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

= λ

∫
Ω

v+∞(x)ϕ(x) dx

for any ϕ ∈ Xs
0(Ω). This means that v∞ is a nonnegative eigenfunction of (−∆s) whose

corresponding eigenvalue is λ, provided v∞ 6≡ 0. Since λ > λ1,s, this cannot occur. Then
v∞ ≡ 0 in Ω.

Finally, testing (18) with ϕ = uk/‖uk‖2Xs0 (Ω), thanks to (19), (20), and the fact that
v∞ ≡ 0 and σ < 1, we deduce

0 = lim
k→+∞

〈J ′λ(uk), uk〉
‖uk‖2Xs0 (Ω)

= lim
k→+∞

(
1− λ‖v+k ‖

2
2 +

‖v+k ‖
σ+1
σ+1

‖uk‖1−σXs0 (Ω)

)
= 1,

which is a contradiction. Thus, (uk)k is bounded in Xs
0(Ω).

As a consequence of this, we get that there exists u∞ ∈ Xs
0(Ω) such that, up to

a subsequence, still denoted by uk,

uk ⇀ u∞ weakly in Xs
0(Ω),

uk → u∞ in Lν
(
Rn
) (21)

as k → +∞ and for any ν ∈ [1, 2∗s[.

https://www.journals.vu.lt/nonlinear-analysis
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Since (uk)k is a Palais–Smale sequence for Jλ, we know that

〈J ′λ(uk), uk〉Xs0 (Ω) → 0, 〈J ′λ(uk), u∞〉Xs0 (Ω) → 0

as k → +∞, which implies

‖uk‖Xs0 (Ω) → ‖u∞‖Xs0 (Ω)

as k → +∞. This and the first convergence in (21) give that uk → u in Xs
0(Ω) as

k → +∞. Hence, Jλ satisfies the Palais–Smale compactness condition. This concludes
the proof of Proposition 3.

Now, we are in position to prove our main existence result stated in Theorem 1.

3.1 Proof of Theorem 1.

Thanks to Propositions 1, 2, and 3, now we can show that the value c given in (4) is critical
for the energy functional Jλ.

To this aim, let % and β be as in (11). Thanks to (5), the definition of ζv given in (3)
immediately yields

‖ζvv‖Xs0 (Ω) > %.

Thus, for every path γ ∈ Γ (s)
λ , there exists tγ ∈ [0, 1] such that γ(tγ) ∈ ∂B̄%. Hence,

by (11)
sup
t∈[0,1]

Jλ
(
γ(t)

)
> Jλ

(
γ(tγ)

)
> β,

so that c > β.
Now, we prove that K(s)

λ,c 6= ∅. To get this goal, we argue again by contradiction
and assume that K(s)

λ,c = ∅. In such a case, by [1, Lemma 1.3 (2) and (6)] there exist
a continuous deformation η : [0, 1]×Xs

0(Ω)→ Xs
0(Ω) and ε > 0 such that

(i) η(t, u) = u for every u /∈ J−1λ ([c− β/2, c+ β/2]);
(ii) Jλ(η(1, u)) 6 c− ε for every u ∈ Xs

0(Ω) such that Jλ(u) 6 c+ ε.

Hence, if γε ∈ Γ (s)
λ and supt∈[0,1] Jλ(γε(t)) 6 c+ ε, we have that

η(1, γε(t)) ∈ Γ (s)
λ and sup

t∈[0,1]

(
η
(
1, γε(t)

))
6 c− ε,

which contradicts the definition of c. Thus, K(s)
λ,c 6= ∅.

As a consequence of this, there exists uλ ∈ Xs
0(Ω) such that

Jλ(uλ) = c and J ′λ(uλ) = 0.

Clearly, uλ is a weak solution of problem (Pλ), and, since the path defined by γv(t) :=

tζvv for every t ∈ [0, 1] belongs to Γ (s)
λ for every v ∈ C(s)

λ , we also have

Jλ(uλ) = c = inf
γ∈Γ (s)

λ

sup
t∈[0,1]

Jλ
(
γ(t)

)
6 sup
t∈[0,1]

Jλ
(
γv(t)

)
. (22)

Nonlinear Anal. Model. Control, 30(1):72–82, 2025
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Inequality (2) immediately follows from (22) observing that, for fixed v ∈ C(s)
λ , one has

sup
t∈[0,1]

Jλ
(
γv(t)

)
= Jλ

((
2

σ + 1

)1/(σ−1)
ζvv

)

=
1

2

1− σ
σ + 1

‖v+‖2(σ+1)/(1−σ)
σ+1

(λ‖v+‖22 − ‖v‖2Xs0 (Ω))
(σ+1)/(1−σ) .

The proof of Theorem 1 is now complete.

3.2 Final comments

We end this paper with some remarks.

Remark 1. We notice that the above proof is patterned after that of [16, Thm. 1.1].
Furthermore, the extension of the above Theorem 1 to nonlocal equations involving the
fractional p-Laplacian operator should be investigated by using [12, Prop. 2.3]. We refer
to the book [14] and to the quoted paper [6] as general references on the subject treated
here.

Remark 2. Theorem 1 continues to hold also if we replace the fractional operator (−∆)s

with a more general integrodifferential operator like LK defined as follows:

LKu(x) :=

∫
Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy, x ∈ Rn,

where the kernel K : Rn \ {0} → (0,+∞) is such that

(i) mK ∈ L1(Rn) with m(x) = min{|x|2, 1};
(ii) there exists θ > 0 such that K(x) > θ|x|−(n+2s) for any x ∈ Rn \ {0}.

For the properties of the fractional Sobolev spaces associated with LK , as well as for its
eigenvalue Dirichlet problem, we refer to [17, 20, 22, 23].

For the (s, p)-Laplacian operator, possibly with measurable coefficients, the readers
could also refer to the first approach in [4, 5].
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