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Abstract. In this paper, fractional-order diffusion and proportional-derivative (PD) control are
introduced in oregonator model, and the Turing pattern dynamics is investigated for the first
time. We take the cross-diffusion coefficient as the bifurcation parameter and give some necessary
conditions for Turing instability of the fractional-diffusion oregonator model under PD control. At
the same time, we construct the amplitude equations near the bifurcation threshold and determine
the pattern formation of the fractional-diffusion oregonator model under PD controller. It is
observed by numerical simulations that in the absence of control, the pattern formation changes
with the variation of the cross-diffusion coefficient in two-dimensional space. Meanwhile, it is
verified that the PD control has a significant impact on Turing instability, and the pattern structure
can be changed by manipulating the control gain parameters for the fractional-diffusion oregonator
model.
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1 Introduction

In the 1940s, Turing discovered that a nonlinear reaction–diffusion model could give rise
to stable spatial patterns from his research [22]. This phenomenon is called diffusion-
driven instability. Apparently, a typical Turing system consists of at least two chemical
reactants, usually called activator and inhibitor. In the absence of diffusion, their steady
state is stable with small perturbations. But in the case of diffusion, they become unstable.
Usually, when a substance diffuses, its concentration gradient decreases, thereby elimi-
nating any structure. However, in Turing instability, diffusion is precisely the reason why
the system loses its stable uniform state and exhibits a structural pattern [2, 7, 8, 14, 30].

Based on Turing’s theoretical research, many scholars have proposed a series of re-
action–diffusion models, such as Belousov–Zhabotinsky reaction model, Degn–Harrison
model, Gray–Scott model, Gierer–Meinhardt model, etc. [10, 11, 17, 29, 31]. They have
studied the Turing instability and pattern formation of these models in depth. Some results
obtained from these reaction–diffusion models have important guiding significance for
explaining some strange phenomenon in nature.

Specifically, in 1974, Field et al. [10] proposed a simplified version of three-variable
Belousov–Zhabotinsky chemical reaction model on the basis of the existing theoretical
research and called it oregonator model. According to the actual chemical reaction, Yyson
et al. [23] further simplified it into a more operable bivariate oregonator model. Since
then, the research on this chemical reaction model has been more and more in depth. Bhu-
vaneswari et al. [5] studied the Turing instability of oregonator model after introducing the
self-diffusion term through linear stability analysis. Peng et al. [19] further obtained the
conditions under which the self-diffusion term drives the generation of Turing patterns in
oregonator model, and gave some threshold conditions that may generate different Turing
patterns.

In fact, it is found that the effect of cross-diffusion terms on bifurcation kinetics
and mode formation of reaction–diffusion models plays a significant role in chemical
reaction models [20, 21, 24]. Igal et al. [4] studied the Turing instability of oregonator
model driven by cross diffusion and the influence of cross-diffusion term on the Turing
mode of the model under different system parameters. In particular, they provided some
parameter conditions required for the formation of special Turing pattern. Berenstein et
al. [3] revealed some special behavior patterns induced by cross-diffusion terms in the
oregonator model. Including Turing patterns, standing waves, oscillatory Turing patterns,
and quasistanding waves and other patterns need to meet the threshold conditions.

Moreover, Voroney et al. [27] found that the nature of the medium in which reaction
and diffusion processes occur can influence the character of spatiotemporal dynamics that
is observed. Furthermore, diffusion process can be affected by the make-up of the medium
and its geometry [12, 25, 26]. In this case, it leads to the change of Turing pattern in
the reaction–diffusion model comparing with general situation. In general, the reaction–
diffusion equation describes the molecule performing a nearest neighbor jump at a site.
The mean-square displacement of the molecule changes over time: ∆r2 ∼ tγ . When
γ = 1, system experiences normal diffusion; when γ 6= 1, system experiences abnormal
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diffusion [9, 13]. The abnormal diffusion corresponds to the fractional-diffusion index.
This situation generally appears in some fractal media, which means the jump amplitude
and jump waiting time of the molecule change. Some scholars had studied the influence
of diffusion index on the formation of system patterns in reaction–diffusion models and
made some achievements. Golovin et al. [18] found through experiments that when the
diffusion index of reaction–diffusion models is fractional, the formation of patterns does
not necessarily depend on the specific size relationship between the diffusion rates of
activator and inhibitor. Langlands et al. [16] investigated a system with abnormal diffusion
and concluded that when the diffusion index of activator is equal to the diffusion index
of inhibitor, the formation conditions of Turing patterns are the same as those of normal
reaction–diffusion model. In general, considering anomalous diffusion plays an important
role in exploring the dynamics of pattern formation in fractal media. Feng et al. [9]
researched the effect of the partial derivative order of the self-diffusion term on the Turing
mode of the model and gave the change relationship between the Turing stability of the
model and the superdiffusion term.

Also, in recent years, the research on control strategies has developed rapidly and
been widely applied in many fields, including biology, medicine, computer science, etc.
[1, 15, 34]. Especially, Xu et al. [28] built a novel plankton population delayed dynami-
cal model and designed a suitable nonlinear delay feedback controller and a reasonable
hybrid controller, obtaining the critical delay value to control the stability domain and
the time of appearance of bifurcation phenomenon of the formulated plankton population
delayed dynamical model. Moreover, Zhao et al. [32] proposed a novel delayed Lotka–
Volterra commensal symbiosis model and developed two distinct hybrid delayed feedback
controllers, successfully modifying the domain of stability and the time of the bifurcation
phenomenon in this model. The results referring above may be used for other fractional-
order and integer-order dynamical systems in a wide range of disciplines to dominate
the bifurcation phenomena, stability, and chaos. In fact, the proportional-derivative (PD)
controller is a hybrid control strategy that has been proved to be effective at present. It has
the advantages of improving the response speed of the system and reducing the oscillation.
Ding et al. [6] applied PD control strategy to the small-world network model to effectively
suppress Hopf bifurcation of the model. Zhu et al. [33] used PD control strategy in the
diffused mussel–algae model to effectively suppress the Turing instability of the model
and ensure the stability of the model.

Based on some inspirations from the above research, this paper introduces PD con-
troller to realize effective regulation of fractional-order diffusion oregonator model. We
first discuss the effect of fractional-diffusion index on system pattern formation, then we
study the effect of PD controller on the Turing instability of oregonator model and use PD
controller to drive the pattern structures of the model to change so that the Turing unstable
state can be restored to a stable state.

The specific organization of this paper is as follows. In Section 2, we present the stud-
ied bivariate oregonator model with cross-diffusion terms and introduce the PD controller
used and fractional-order diffusion. In Section 3, we analyze the threshold conditions
for Turing instability in the model. In Section 4, the amplitude equation of the model is
given and analyzed theoretically. In Section 5, we give the stability conditions of different
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patterns. In Section 6, we perform some numerical simulations in two-dimensional space.
In Section 7, the conclusions are drawn.

2 Model description

Oregonator reaction model is a kinetic model used to describe the interaction of several
types of chemical substances, as follows [5]:

du

dt
=

1

a

[
u− u2 − fvu− q

u+ q

]
,

dv

dt
= u− v, (1)

where u represents the dimensionless concentration of HBrO2, and v represents the
concentration of Cea+. a is the ratio of the time scale. f is the ratio of bromine and
dibromomalonic acid in the reaction model, and its value is related to the initial condi-
tions. q is related to some kinetic parameters and the initial concentration of the reagent.

According to mathematical analysis, there is a unique positive equilibrium

E∗ = (u∗, v∗) =

(
−b+

√
b2 + 4c

2
,
−b+

√
b2 + 4c

2

)
,

where b = f + q − 1, c = fq + q.
We introduce the following PD controller into the model

F = kp(v − v∗) + kd
d(v − v∗)

dt

in which kp and kd indicate the proportional coefficient and the differential coefficient,
respectively.

So the controlled oregonator model can be expressed as follows:

du

dt
=

1

a

[
u− u2 − fvu− q

u+ q

]
,

dv

dt
= u− v + F. (2)

Obviously, the equivalent form of model (2) is as follows:

du

dt
=

1

a

[
u− u2 − fvu− q

u+ q

]
,

dv

dt
=
u− v + kp(v − v∗)

1− kd
. (3)

Then we introduce the fractional-order diffusion terms into the controlled model (3)
and obtain

∂u

∂t
=

1

a

[
u− u2 − fvu− q

u+ q

]
+Du∇αu+Duv∇αv,

∂v

∂t
=
u− v + kp(v − v∗)

1− kd
+Dvu∇αu+Dv∇αv,

∂u

∂η
=
∂v

∂η
= 0,

u(x, y, 0) > 0, v(x, y, 0) > 0,

(4)
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Du, Dv are the self-diffusion coefficients, and Duv , Dvu are the cross-diffusion coeffi-
cients. η is the outward unit normal vector of the boundary. The homogeneous Neumann
boundary condition indicates that this model is self-contained with zero flux across the
boundary. ∇α is the fractional-order Laplace operator, and 1 < α 6 2. The form of
fractional-order diffusion term for u (the same form for v) can be defined as

∇αu = − sec ᾱ

2Γ(2− α)

d2

dx2

+∞∫
−∞

u(ξ, t)

(x− ξ)α−1
dξ,

where ᾱ = πα/2, and Γ(·) denotes the Gamma function.
Considering that all eigenvalues of the diffusion matrix of a chemical model must be

positive, the following assumption is made:

(H1) Du, Dv > 0, (Du +Dv)
2 − 4(DuDv −DuvDvu) > 0,

DuDv −DuvDvu > 0.

Analyzing the effect of the diffusion terms on the Turing instability of the model,
assumption (H1) needs to always be true.

3 Analysis of local stability and Turing instability

In this section, we firstly investigate the local stability of the nondiffusive model (3) at the
equilibrium point. Then, on the basis of local asymptotic stability of the nondiffusive
model (3), we study the Turing instability at the equilibrium point of the fractional-
diffusion model (4), and the Turing bifurcation threshold condition is given by selecting
bifurcation parameter.

3.1 Local stability for the nondiffusive model (3)(3)(3)

It is clearly that the nondiffusive model (3) and model (1) have the commonly unique
positive equilibrium E∗. For the nondiffusive model (3), linearization is performed at the
equilibrium point E∗, resulting in the corresponding Jacobian matrix J as follows:

J =

[
e11 e12
e21

1−kd
e22+kp
1−kd

]
in which

e11 =
1− 2u∗

a
− 2fqv∗

a(u∗ + q)2
, e12 =

f(u∗ − q)
a(u∗ + q)

,

e21 = 1, e22 = −1.

The characteristic equation of model (3) is

λ2 + p0λ+ h0 = 0, (5)
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where

p0 = −
(
e11 +

e22 + kp
1− kd

)
, h0 =

e11(e22 + kp)

1− kd
− e12e21

1− kd
,

and the eigenvalues calculated from Eq. 5 are provided by

λ1,2 =
−p0 ±

√
p20 − 4h0

2
.

We propose the following assumption:

(H2)
2u∗ − 1

a
+

2fqv∗

a(u∗ + q)2
− kp − 1

1− kd
> 0,[

1− 2u∗

a
− 2fqv∗

a(u∗ + q)2

]
kp − 1

1− kd
− f(u∗ − q)
a(u∗ + q)(1− kd)

> 0.

Theorem 1. If (H2) always holds, then model (3) is locally asymptotically stable at the
equilibrium point E∗.

Proof. If (H2) holds, we have p0 > 0, h0 > 0. Then we easily obtain λ1,2 < 0.
According to sufficient conditions for the stability of linear systems and the topological
classification of hyperbolic equilibrium points plane, it is easily concluded that E∗ is
locally asymptotically stable.

Remark 1. It should be noted that Turing instability corresponds to diffusion-driven
instability in a uniform steady state. That is, in a uniformly stirred model without the
drive of diffusion terms, it remains stable. But in a complete reaction–diffusion model, it
is unstable. So it is necessary to ensure that model (3) remains stable at the equilibrium
point E∗.

3.2 Turing instability for the fractional-diffusion model (4)(4)(4)

Assuming that the perturbation form at the equilibrium point E∗ can be written as eλt ×
cos kxx cos kyy, by conducting a perturbation analysis at equilibrium point E∗, the Jaco-
bian matrix Jk for the fractional-diffusion model (4) is as follows:

Jk =

[
e11 − kαDu e12 − kαDuv

e21
1−kd − k

αDvu
e22+kp
1−kd − k

αDv

]
,

where k is the wave number. From the Jacobian matrix the characteristic equation of
model (4) is obtained as follows:

λ2 + pkλ+ hk = 0, (6)

https://www.journals.vu.lt/nonlinear-analysis
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where

pk = kα(Du +Dv) + p0,

hk = (DuDv −DuvDvu)k2α

+

(
−Du

e22 + kp
1− kd

−Dve11 +Duv
e21

1− kd
+Dvue12

)
kα + h0,

and the eigenvalues calculated from Eq. 6 are provided by

λ3,4 =
−pk ±

√
p2k − 4hk

2
.

For the sake of convenience, we let

d = DuDv −DuvDvu,

g = −Du
e22 + kp
1− kd

−Dve11 +Duv
e21

1− kd
+Dvue12.

In order to explain the conditions of Turing instability in the model, we propose the
following assumption:

(H3) g < 0, ∆ = g2 − 4dh0 > 0.

Theorem 2. If (H1)–(H3) hold, then model (4) undergoes Turing instability at the equi-
librium point E∗.

Proof. Equation (6) has provided the characteristic relation of model (4) including dif-
fusion terms. If (H1)–(H3) hold, we have pk > 0 and hk < 0, obtaining λ3 = (−pk −√
p2k − 4hk)/2 < 0 and λ4 = (−pk +

√
p2k − 4hk)/2 > 0. According to Theorem 1, it

is verified that E∗ is unstable, so that model (4) undergoes Turing instability.

Obviously, hk is a quadratic function of kα. If (H3) holds, we can drive the conclusion
that hk < 0 holds for some certain values of k.

For hk = 0, we obtain kt for the lowest point of it as follows:

kt =

(−Du
e22+kp
1−kd −Dve11 +Duv

e21
1−kd +Dvue12

2(DuvDvu −DuDv)

)1/α

.

Then we get that

hkmin
= h0 −

(−Du
e22+kp
1−kd −Dve11 +Duv

e21
1−kd +Dvue12)2

4(DuDv −DuvDvu)
.

By Theorem 2, the Turing instability condition of model (4) turns into the following
inequality:

hkmin < 0.

Nonlinear Anal. Model. Control, 30(2):291–311, 2025
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Figure 1. The graphic of Re(λ) against kα for Dvu = 0.6, 0.877, 1.4, and 1.8.

ChoosingDvu as the bifurcation parameter of model (4), we give the critical value for
Turing instability of Dvu as follows:

DT
vu =

1

e212

[
Dve11e12 − 2Duve11e22 +Due12e22 − 2Duve11kp

+Due12kp − 2
(
(Duve11 −Due12)(Duve22 −Dve12 +Duvkp)

× (e11e22 − e12e21 + e11kp)
)1/2 ]

. (7)

Then we supply some numerical simulations to verify our theoretical analysis of
Turing instability for model (4). The parameters are selected as: a = 0.04, q = 0.01,
f = 0.5, and kd = kp = 0. Through calculation, we determine that the equilibrium point
E∗ = (u∗, v∗) = (0.5189, 0.5189). We let Du = Dv = 1, Duv = 0 and select Dvu

as the bifurcation parameter, obtaining the Turing bifurcation parameter DT
vu = 0.8098

from Eq. (7).
We fit the graph of the relationship between Re(λ) and kα as shown in Fig. 1. It is

obviously that when Dvu > DT
vu, Eq. (6) has the characteristic roots with positive real

parts. In Fig. 1, as the value of Dvu increases, the range of kα that makes Re(λ) positive
gradually expands. It means that Turing instability becomes more likely to occur. Also,
we can see that when Dvu < DT

vu, Re(λ) always keeps negative. In this case, Turing
instability does not occur in model (4).

We also simulate how different values of α influence the relationship between Re(λ)
and k in Fig. 2. Also, the relationship between kt and α for Dvu = 1.8 is plotted in
Fig. 3. We can see from Fig. 2 that when Dvu is fixed, changing the value of α does
not influence the maximum of Re(λ). But as α decreases, the wave number’s range of
Turing instability expands. Specifically, when α is smaller, Re(λ) > 0 will appear earlier
and disappear later. Meanwhile, the value of critical wave number kt decreases when α
decreases as shown in Fig. 3. Figures 2 and 3 indicate that when choosing smaller value
of α, model (4) is more likely to generate Turing instability.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 2. The graphic of Re(λ) against k for Dvu = 1.8 and the parameters α = 2, 1.8, 1.5, 1.2.

Figure 3. The graphic of kt against α for Dvu = 1.8.

4 Weakly nonlinear analysis

In this section, we apply amplitude equations to explore the different pattern formations
in model (4). By applying the standard multiscale analysis, we derive the amplitude
equations for the occurrence of Turing instability.

First, expanding model (4) by Taylor expansion around the homogeneous steady state
E∗ = (u∗, v∗), we get

∂

∂t

(
û
v̂

)
= L

(
û
v̂

)
+N, (8)

where

L =

(
Du∇α + e11 Duv∇α + e12
Dvu∇α + e21

1−kd Dv∇α +
e22+kp
1−kd

)
,

N =

(
p20û

2 + p11ûv̂ + p02v̂
2

q20û
2 + q11ûv̂ + q02v̂

2

)
+

(
p30û

3 + p21û
2v̂ + p12ûv̂

2 + p03v̂
3

q30û
3 + q21û

2v̂ + q12ûv̂
2 + q03v̂

3

)

Nonlinear Anal. Model. Control, 30(2):291–311, 2025
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in which

p11 =
25(u∗ − 1

100 )

2(u∗ + 1
100 )2

− 25

2(u∗ + 1
100 )

,

p20 =
25v∗

2(u∗ + 1
100 )2

−
25v∗(u∗ − 1

100 )

2(u∗ + 1
100 )3

− 25,

p21 =
25

2(u∗ + 1
100 )2

−
25(u∗ − 1

100 )

2(u∗ + 1
100 )3

,

p30 =
25v∗(u∗ − 1

100 )

2(u∗ + 1
100 )4

− 25v∗

2(u∗ + 1
100 )3

,

p02 = p03 = p12 = 0,

q02 = q03 = q11 = q12 = q20 = q21 = q30 = 0.

For simplicity of writing, we still replace (û v̂)> with (u v)> in the following.
Because in the calculation, the analysis is limited to the behavior of the control pa-

rameters near the critical point of the phase transition, we expand Dvu in the following
way:

DT
vu −Dvu = εd1 + ε2d2 + ε3d3 + o

(
ε3
)
, (9)

where ε is taken as a small quantity. Use this small parameter ε to expand the variable
(u v)> and the nonlinearity N as follows:(

u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+ o
(
ε3
)
, (10)

and
N = ε2N2 + ε3N3 + o

(
ε3
)
, (11)

where

N2 =

(
p20u

2
1 + p11u1v1

0

)
,

N3 =

(
2p20u1u2 + p11u1v2 + p11u2v1 + 2p02v1v2

0

)
+

(
p30u

3
1 + p21u

2
1v1

0

)
.

The linear operator L can be decomposed into

L = Lc +
(
Dvu −DT

vu

)
M, (12)

where

Lc =

(
Du∇α + e11 Duv∇α + e12
DT
vu∇α + e21

1−kd Dv∇α +
e22+kp
1−kd

)
, M =

(
0 0
∇α 0

)
.

Separating the dynamical scales of the model, we let t1 = εt, t2 = ε2t, t3 = ε3t and
treat them as independent variables. Then the micro quotient as regards t can be written
as

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ ε3

∂

∂t3
+ o
(
ε3
)
. (13)
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By substituting Eqs. (9)–(13) into Eq. (8), according to the different orders of ε, we
obtain the corresponding perturbation equations

ε: Lc

(
u1
v1

)
= 0, (14)

ε2: Lc

(
u2
v2

)
=

∂

∂t1

(
u1
v1

)
− d1M

(
u1
v1

)
−N2, (15)

ε3: Le

(
u3
v3

)
=

∂

∂t1

(
u2
v2

)
+

∂

∂t2

(
u1
v1

)
− d2M

(
u1
v1

)
− d1M

(
u2
v2

)
−N3. (16)

For perturbation equations, we usually describe their solutions in terms of modulus.
The modulus includes three wave vectors called k1, k2, and k3, respectively. The inter-
section angle of the wave vectors is 120◦.

Solving Eq. (14), we have(
u1
v1

)
=

(
ϕ
1

)( 3∑
j=1

Wje
(ikj ·r) + c.c.

)
, j = 1, 2, 3, (17)

where c.c. denotes the complex conjugate, and r = (x, y) stands for the spatial vector.
Wj is the amplitude of e(ikj ·r). Meanwhile,

ϕ =
DT
vuk

α
c − e12

e11 −Dukαc
, |kj | = kc, k

α
c = kαt

(
DT
vu

)
.

On account of Fredholm solvability condition, the right-hand side of Eqs. (14)–(16)
must be orthogonal to the eigenvectors of the zero eigenvalue of L∗c , which is the adjoint
operator of Lc. The eigenvectors of L∗c can be written as(

1
ψ

)
e(ikj ·r) + c.c., j = 1, 2, 3, ψ =

Duk
α
c − e11

e21
1−kd −D

T
vuk

α
c

.

In Eq. (15), via the orthogonality condition, the amplitude equation of model (4) under
the first level of perturbation is obtained as follows:

(ϕ+ ψ)
∂W1

∂t1
= d1k

α
cW1 + 2(l1 + ψl2)W 2W 3,

(ϕ+ ψ)
∂W2

∂t1
= d1k

α
cW2 + 2(l1 + ψl2)W 1W 3,

(ϕ+ ψ)
∂W3

∂t1
= d1k

α
cW3 + 2(l1 + ψl2)W 1W 2,

(18)

where l1 = p20ϕ
2 + p11ϕ, l2 = q20ϕ

2 + q11ϕ+ q02.
Solving Eq. (15), we get(
u2
v2

)
=

(
U0

V0

)
+

3∑
j=1

(
Uj
Vj

)
eikj ·r +

3∑
j=1

(
Ujj
Vjj

)
ei2kj ·r

+

(
U12

V12

)
ei(k1−k2)r +

(
U23

V23

)
ei(k2−k3)·r +

(
U31

V31

)
ei(k3−k1)·r + c.c., (19)
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where (
U0

V0

)
=

(
u00
v00

)(
|W1|2 + |W2|2 + |W3|2

)
, Uj = ϕVj ,(

Ujj
Vjj

)
=

(
u11
v11

)
W 2
j ,

(
Uij
Vij

)
=

(
u∗
v∗

)
WiW j ,

with (
u00
v00

)
=

−2
e11(e22+kp)

1−kd − e12e21
1−kd

(
l1(e22+kp)

1−kd − e12l2
e11l2 − e21l1

1−kd

)
,

(
u11
u11

)
= −

(
e11 − 4Duk

α
c e12 − 4Duvk

α
c

e21
1−kd − 4DT

vuk
α
c

e22+kp
1−kd − 4Dvk

α
c

)−1(
l1
l2

)
,

(
u∗
u∗

)
= −2

(
e11 − 3Duk

α
c e12 − 3Duvk

α
c

e21
1−kd − 3DT

vuk
α
c

e22+kp
1−kd − 3Dvk

α
c

)−1(
l1
l2

)
.

By applying the Fredholm solvability condition in Eq. (16), considering solutions (17)
and (19) of the upper two levels of perturbation equations, we obtain the amplitude
equation of model (4) under the second level of perturbation as follows:

(ϕ+ ψ)

(
∂Y1
∂t1

+
∂W1

∂t2

)
= kαc (d2W1 + d1Y1)−

[
(I1 + ψS1)|W1|2

+ (I2 + ψS2)
(
|W2|2 + |W3|2

)]
W1

+ 2(l1 + ψl2)(W 2Y 3 +W 3Y 2),

(ϕ+ ψ)

(
∂Y2
∂t1

+
∂W2

∂t2

)
= kαc (d2W2 + d1Y2)−

[
(I1 + ψS1)|W2|2

+ (I2 + ψS2)
(
|W1|2 + |W3|2

)]
W2

+ 2(l1 + ψl2)(W 1Y 3 +W 3Y 1),

(ϕ+ ψ)

(
∂Y3
∂t1

+
∂W3

∂t2

)
= kαc (d2W3 + d1Y3)−

[
(I1 + ψS1)|W3|2

+ (I2 + ψS2)
(
|W2|2 + |W1|2

)]
W3

+ 2(l1 + ψl2)(W 2Y 1 +W 1Y 2),

(20)

where

I1 = −(2ϕp20 + p11)(u00 + u11)− (ϕp11 + 2p02)(v00 + v11)

− 3p30ϕ
3 − 3p21ϕ

2 − 3p12ϕ− 3p03,

I2 = −(2ϕp20 + p11)(u00 + u∗)− (ϕp11 + 2b02)(v00 + v∗)

− 6p30ϕ
3 − 6p21ϕ

2 − 6p12ϕ− 6b30,
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S1 = −(2ϕq20 + p11)(u00 + u11)− (ϕq11 + 2q02)(v00 + v11)

− 3q30ϕ
3 − 3q21ϕ

2 − 3q12ϕ− 3q03,

S2 = −(2ϕq20 + q11)(u00 + u∗)− (ϕq11 + 2q02)(v00 + v∗)

− 6q30ϕ
3 − 6q21ϕ

2 − 6q12ϕ− 6q03.

The amplitude Aj = Auj /ε = Avj is the coefficient of eikj ·r in each level:(
Auj
Avj

)
= ε

(
ϕ
1

)
Wj + ε2

(
ϕ
1

)
Yj + o

(
ε2
)
. (21)

Then, we multiply Eqs. (18) and (20) by ε and ε2 respectively, and use Eqs. (13) and
(21) to combine the variables. Consequently the amplitude equation is gained as follows:

τ0
∂A1

∂t
= µA1 + g0Ā2Ā3 − ε

[
g1|A1|2 + g2ε(|A2|2 + |A3|2ε)ε

]
A1,

τ0
∂A2

∂t
= µA2 + g0Ā1Ā3 − ε

[
g1|A2|2 + g2ε(|A1|2 + |A3|2ε)ε

]
A2,

τ0
∂A3

∂t
= µA3 + g0A1A2 − ε

[
g1|A3|2 + g2ε(|A1|2 + |A2|2ε)ε

]
A3,

(22)

where

τ0 =
ϕ+ ψ

DT
vuk

α
c

, µ =
Dvu −DT

vu

DT
vu

,

g0 =
l1 + ψl2
2DT

vuk
α
c

, g1 =
I1 + ψS1

DT
vuk

α
c

, g2 =
I2 + ψS2

DT
vuk

α
c

.

5 Stability analysis of pattern formations

It is obviously that stable Turing patterns correspond to stable steady states, and each
amplitude Aj can be decomposed into Aj = ρje

iθj where θj is the phases angle, and
magnitude ρj = |Aj |. Substituting Aj = ρje

iθj into Eq. (22), one obtains the equations
with respect to real variables ρj and θj as follows:

τ0
∂θ

∂t
= −g0

ρ21ρ
2
2 + ρ22ρ

2
3 + ρ21ρ

2
3

ρ1ρ2ρ3
sin θ,

τ0
∂ρ1
∂t

= µρ1 + |g0|ρ2ρ3 cos θ − g1ρ31 − g2
(
ρ22 + ρ23

)
ρ1,

τ0
∂ρ2
∂t

= µρ2 + |g0|ρ1ρ3 cos θ − g1ρ32 − g2
(
ρ21 + ρ23

)
ρ2,

τ0
∂ρ3
∂t

= µρ3 + |g0|ρ1ρ2 cos θ − g1ρ33 − g2
(
ρ21 + ρ22

)
ρ3,

(23)

where θ = θ1 + θ2 + θ3. Equation (23) has five types of solutions that correspond to
specific pattern solutions. The following points are summarized:
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(i) The homogeneous stationary state

(O: ρ1 = ρ2 = ρ3 = 0)

is stable for µ < µ2 = 0 and unstable for µ > µ2 = 0.
(ii) The stripe pattern (

S: ρ1 =

√
µ

g1
6= 0 and ρ2 = ρ3 = 0

)
is stable for µ > µ3 = g20g1/(g2 − g1)2 and unstable for µ < µ3.

(iii) The hexagon pattern(
I0 or Iπ: ρ1 = ρ2 = ρ3 =

|g0| ±
√
g20 + 4(g1 + 2g2)µ

2(g1 + 2g2)

)
exists for µ > µ1 = −g20/(4(g1 + 2g2). The solution

ρ− =
|g0| −

√
g20 + 4(g1 + 2g2)µ

2(g1 + 2g2)

is always unstable, and the solution

ρ+ =
|g0|+

√
g20 + 4(g1 + 2g2)µ

2(g1 + 2g2)

is stable only for µ < µ4 = g20(2g1 + g2)/(g2 − g1)2.
(iv) The mixed state (

ρ1 =
|g0|

g2 − g1
and ρ2 = ρ3 =

√
µ− g1ρ21
g1 + g2

)
exists for g2 > g1 and µ > µ3 = g20g1/(g2 − g1)2 and is always unstable.

6 Numerical simulations

In this section, we carry on some numerical simulations to verify the theoretical results
on pattern selections in Section 5 and the effect of Dvu and α on Turing instability and
patterns in model (4). Also, by applying PD control tactics in model (4), we find that the
PD control cannot only improve the instability driven by diffusion terms, but also change
the pattern structure by choosing appropriate values of kp and kd. Because of the similar
structure of Turing patterns between activating reactant u and inhibiting reactant v, we
only give the pattern formation of u in this section.

The parameters of the controlled model (4) are selected as: a = 0.04, q = 0.01,
f = 0.5, Du = Dv = 1, Duv = 0, and we choose Dvu as the bifurcation parameter.
Through calculation, we have the equilibrium point E∗ = (u∗, v∗) = (0.5189, 0.5189)
and DT

vu = 0.8098. We can also obtain that the coefficients of the corresponding ampli-
tude equation (22): g0 = −22.4671, g1 = 1392.8, g2 = 2957.1, and the critical values of
the appearance of various patterns: µ1 = −0.0173, µ2 = 0, µ3 = 0.2873, µ4 = 1.1847.
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6.1 Pattern structure of model (4)(4)(4) without control

In this subsection, we only consider the effect of Dvu and α on the spatiotemporal
dynamics in model (4). Let kp = kd = 0.

In order to sketch the Turing patterns for model (4), we adopt the time step size ∆t =
0.001 and the space step size dx = dy = 0.1 over a two-dimensional domain uniformly
divided into [0, 600] × [0, 600] lattice points. Select the bounded domain Ω = [0, Lx] ×
[0, Ly] and apply homogeneous Neumann boundary conditions. The initial conditions of
the experiments are chosen to be near the positive equilibrium point E∗, as follows:

u = u∗ + 0.001 · σ, v = v∗ + 0.001 · σ,

where σ represents a uniformly distributed random perturbation.
We firstly consider the effect of Dvu on model (4) without control. In Fig. 4, we

present the Turing patterns of model (4) with an iteration time of t = 100 and α = 2,
selecting Dvu = 0.6, 0.877, 1.4, and 1.8, respectively. When Dvu = 0.6, we can get
µ = −0.2591 < µ2 = 0 in this case, and the pattern structure is solid color structure,
which means that model (4) is stable at equilibrium point E∗. As Dvu = 0.877, we
have µ = 0.0829 < µ3 = 0.2873, leading spot pattern structure. Let Dvu = 1.4, and
we obtain µ = 0.7287 < µ4 = 1.1847, causing spot and stripe pattern structure. When
Dvu = 1.8, we get µ = 1.2227 > µ4 = 1.1847, and the pattern structure turns into stripe
pattern structure. These agree with our conclusions driven in Section 5.

For illustrating the effect of α on model (4), we also give the pattern structures of
model (4) for α = 1.2 and 1.5 with t = 100 in Fig. 5, respectively. The values of Dvu

are the same as those given in Fig. 4. It is obviously that as the value of α decreases, the
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Figure 4. The pattern structure of model (4) without control for different values of the cross-diffusion coefficient
Dvu.

Nonlinear Anal. Model. Control, 30(2):291–311, 2025

https://doi.org/10.15388/namc.2025.30.38967


306 H. Li et al.

0.2

0.4

0.6

0.8

1

Dvu = 1.8, α = 1.2

0.2

0.4

0.6

0.8

1

Dvu = 1.4, α = 1.2

0.2

0.4

0.6

0.8

Dvu = 0.877, α = 1.2

0.2

0.4

0.6

0.8

1

Dvu = 1.8, α = 1.5

0.2

0.4

0.6

0.8

1

Dvu = 1.4, α = 1.5

0.2

0.4

0.6

0.8

Dvu = 0.877, α = 1.5

Figure 5. The pattern structure of model (4) without control for different values of the cross-diffusion coefficient
Dvu and the fractional-diffusion coefficient α.

number of spots and strips increases significantly in the structure. The phenomenon is
consistent with the previous conclusion, which verifies that when α is smaller, the range
of Turing instability is wider. As shown in Fig. 5, under the same grid size, the smaller α,
the more compact the pattern structure.

6.2 Pattern structure of model (4)(4)(4) under PD control

Then we discuss the PD controller’s influence on Turing patterns. Keeping all parameters
given in Section 6, we conduct some numerical simulations on Turing patterns with
different values of kp and kd.

Firstly, we apply controller’s parameter kd to improve the Turing instability and change
pattern structures of model (4). Let kp = 0. Fix parameters Dvu = 1.8 and let kd =
0, 0.635, 0.775, and 0.8. According to expression (7) forDT

vu, we obtain the correspond-
ing DT

vu = 0.8098, 1.3539, 1.7717, and 1.8959, respectively.
Based on Theorem 2 and some driven conditions, when Dvu > DT

vu, we have
hkmin

< 0, which is leading positive value of Re(λ), so that the Turing instability of
model (4) will occur. Otherwise, it will not occur. Then we plot the relationship between
Re(λ) and different values of kd in Fig. 6. It is clearly that as the value of kd increases,
the value of Re(λ) decreases gradually, and when kd = 0.8, causing DT

vu = 1.8959 >
Dvu = 1.8, Re(λ) keeps negative. It shows that the Turing instability of model (4) can be
suppressed by kd.

Then we give some simulations of the Turing pattern structures of model (4) with
α = 2. We can see from Fig. 7 that the PD controller has a significant regulation effect
on the Turing pattern structure of oregonator model. When kd = 0, which means that
model (4) is uncontrolled, the pattern mode is stripe pattern structure. Then we choose
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Figure 6. The graphic of Re(λ) against kα for different parameters kd = 0, 0.635, 0.775, and 0.8.
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Figure 7. The pattern structures of model (4) under PD control with kd = 0.635, 0.775, and 0.8.

kd = 0.635, and it turns into spot and stripe pattern structure. As we increase the value
of kd to 0.775 and 0.8, the pattern continues to change into spot pattern structure and
solid pattern structure, respectively. It is clearly that we can realize the transformation
of pattern structure and achieve stability of model (4) caused by cross-diffusion term via
changing the value of kd.

Following that, we consider the PD controller’s parameter kp. Let kd = 0 and keep
other parameters. Under the effect of PD controller for kp = −5.4 and −6, we can also
achieve the transformation of pattern structures in model (4) with α = 2 as shown in
Fig. 8. Contrasting with Fig. 4, we can see that the stripe pattern structure turns into spot
and stripe pattern structure (kp = −5.4) and spot pattern structure (kp = −6). Figure 8
indicates that kp can also influence the pattern structure in model (4) like kd. Also, the
relationship between Re(λ) and different values of kp is plotted in Fig. 9.
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Figure 8. The pattern structures of model (4) under PD control with kp = −5.4 and −6.
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Figure 9. The graphic of Re(λ) against kα for different parameters kp = −5.4 and −6.

Stability condition in parameter space

Figure 10. Graph of Turing bifurcation threshold DTvu varying with control parameters kp and kd.

Finally, we plot the relationship between controller parameters kp, kd and Turing
bifurcation DT

vu in Fig. 10 for comparing their control effects. From the result in Fig. 10
it is obviously that kd has a more significant impact on improving bifurcation threshold
than kp. It corresponds with some numerical simulations presented above.
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7 Conclusions

In this paper, we firstly introduce fractional-order diffusion terms into a bivariate orego-
nator model, then we apply a PD controller in this model. Choosing Dvu as the Turing
bifurcation parameter, we discuss the condition when Turing instability occurs in the
model, and give the bifurcation threshold. Also, we push the amplitude equation of the
model, and the formation of pattern structure is predicted theoretically. Based on the
theoretical analysis and numerical simulations, we verify the influence of fractional-order
parameter α on the range of Turing instability caused by cross-diffusion term and the
significant effect of PD controller on Turing instability and pattern structures. Selecting
smaller value of αwill make the model generate Turing instability earlier and the intensive
pattern structure with the same Dvu. By choosing appropriate value of kp or kd, we
achieve the suppression of Turing instability and transformation of pattern structures in
oregonator model.

In the future, we will continue to explore the pattern selection mode of oregonator
model and the derivation of amplitude equation in three-dimensional space, aiming to
contribute more achievements to the study of nonlinear space–time dynamics.

Acknowledgment. The authors wish to express their gratitude to the editors and the
reviewers for the helpful comments.
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