Application of spatial auto-beta models in statistical classification
Articles
Eglė Zikarienė
Vilnius University
https://orcid.org/0000-0002-1865-8017
Kęstutis Dučinskas
Klaipeda University
https://orcid.org/0000-0002-6079-7504
Published 2021-12-15
https://doi.org/10.15388/LMR.2021.25219
pdf

Keywords

Bayes discriminant function
linear discriminant function
actual error rate
supervised classification

How to Cite

Zikarienė, E. and Dučinskas, K. (2021) “Application of spatial auto-beta models in statistical classification”, Lietuvos matematikos rinkinys, 62(A), pp. 36–43. doi:10.15388/LMR.2021.25219.

Abstract

In this paper, spatial data specified by auto-beta models is analysed by considering a supervised classification problem of classifying feature observation into one of two populations. Two classification rules based on conditional Bayes discriminant function (BDF) and linear discriminant function (LDF) are proposed. These classification rules are critically compared by the values of the actual error rates through the simulation study.

pdf

Downloads

Download data is not yet available.

Most read articles in this journal

<< < 1 2 3 > >>