The authors introduced the concept of a pseudo-Heron triangle, such that squares of sides are integers, and the area is an integer multiplied by $2$. The article investigates the case of pseudo-Heron triangles such that the squares of the two sides of the pseudo-Heron triangle are primes of the form $4k+1$. It is proved that for any two predetermined prime numbers of the form $4k+1$ there exist pseudo-Heron triangles with vertices on an integer lattice, such that these two primes are the sides of these triangles and such triangles have a finite number. It is also proved that for any predetermined prime number of the form $4k+1$, there are isosceles triangles with vertices on an integer lattice, such that this prime is equal to the values of two sides and there are only a finite number of such triangles.